13C-13C correlation spectroscopy of membrane-associated influenza virus fusion peptide strongly supports a helix-turn-helix motif and two turn conformations.

نویسندگان

  • Yan Sun
  • David P Weliky
چکیده

The influenza virus fusion peptide (IFP) is the N-terminal domain of the viral hemagglutinin protein, binds to the endosomal membrane, and plays a critical role in fusion between the viral and endosomal membranes which is a primary step in infection. The IFP is also an important system for testing simulation methods for membrane-associated peptides. In detergent, the IFP forms helix-turn-helix and helix-turn-strand structures at pH 5.0 and 7.4, respectively, while simulations in membranes by different groups have yielded conflicting results with some reports of a continuous helix without a turn. In this study, (13)C-(13)C NMR correlation spectra were obtained for the membrane-associated IFP and the (13)C chemical shifts supported a helix-turn-helix motif at both pH 5.0 and 7.4 with an alternate turn conformation at pH 5.0 that was absent at pH 7.4. The alternate conformation was correlated with protonation of the side chain of Glu-11 in the turn and with greater fusion at pH 5.0. The structures are overall consistent with the hypothesis of "inverted V" membrane location of the IFP with insertion of the N-terminal region into the membrane and contact of the turn with the lipid/water interface. The positions of hydrophobic residues in the pH 5.0 structure may favor membrane insertion with resultant increased membrane perturbation and fusion rate. In addition to their functional relevance, these IFP structures are important reference data for simulations of the membrane-associated IFP which can in principle detect the full conformational distribution of the IFP.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Closed and Semiclosed Interhelical Structures in Membrane vs Closed and Open Structures in Detergent for the Influenza Virus Hemagglutinin Fusion Peptide and Correlation of Hydrophobic Surface Area with Fusion Catalysis.

The ∼25 N-terminal "HAfp" residues of the HA2 subunit of the influenza virus hemagglutinin protein are critical for fusion between the viral and endosomal membranes at low pH. Earlier studies of HAfp in detergent support (1) N-helix/turn/C-helix structure at pH 5 with open interhelical geometry and N-helix/turn/C-coil structure at pH 7; or (2) N-helix/turn/C-helix at both pHs with closed interh...

متن کامل

Lipid Tail Protrusion in Simulations Predicts Fusogenic Activity of Influenza Fusion Peptide Mutants and Conformational Models

Fusion peptides from influenza hemagglutinin act on membranes to promote membrane fusion, but the mechanism by which they do so remains unknown. Recent theoretical work has suggested that contact of protruding lipid tails may be an important feature of the transition state for membrane fusion. If this is so, then influenza fusion peptides would be expected to promote tail protrusion in proporti...

متن کامل

Conformational mapping of the N-terminal peptide of HIV-1 gp41 in lipid detergent and aqueous environments using 13C-enhanced Fourier transform infrared spectroscopy.

The N-terminal domain of HIV-1 glycoprotein 41,000 (gp41) participates in viral fusion processes. Here, we use physical and computational methodologies to examine the secondary structure of a peptide based on the N terminus (FP; residues 1-23) in aqueous and detergent environments. (12)C-Fourier transform infrared (FTIR) spectroscopy indicated greater alpha-helix for FP in lipid-detergent sodiu...

متن کامل

NMR determination of protein partitioning into membrane domains with different curvatures and application to the influenza M2 peptide.

The M2 protein of the influenza A virus acts both as a drug-sensitive proton channel and mediates virus budding through membrane scission. The segment responsible for causing membrane curvature is an amphipathic helix in the cytoplasmic domain of the protein. Here, we use (31)P and (13)C solid-state NMR to examine M2-induced membrane curvature. M2(22-46), which includes only the transmembrane (...

متن کامل

Detection of closed influenza virus hemagglutinin fusion peptide structures in membranes by backbone (13)CO- (15)N rotational-echo double-resonance solid-state NMR.

The influenza virus fusion peptide is the N-terminal ~20 residues of the HA2 subunit of the hemagglutinin protein and this peptide plays a key role in the fusion of the viral and endosomal membranes during initial infection of a cell. The fusion peptide adopts N-helix/turn/C-helix structure in both detergent and membranes with reports of both open and closed interhelical topologies. In the pres...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Journal of the American Chemical Society

دوره 131 37  شماره 

صفحات  -

تاریخ انتشار 2009